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Abstract
In the first part we present experimental results concerning the flow of a densely
packed grain collection down a two-dimensional inclined channel. For the range
of inclinations corresponding to a steady, uniform regime and to nonsliding
conditions at the bottom, we obtain quasi-linear profiles of velocity, that are
in contradiction with the predictions of the kinetic theory. We attribute this
discrepancy to the inadequacy of the binary collision picture in the case of
dense packings. We also show that the various velocity profiles obtained for
different flow rates and slopes merge onto a single master curve, according to
the following law: vX/

√
gd ∝ [sin(θ − θc)/ cos θc]1/2 y/d (d being the grain

diameter, θ the channel inclination angle and θc the maximal angle of repose),
provided that the regime is steady and uniform. Arguing that continuous paths of
transient contacts are effective for transporting momentum and energy through
the bulk, and that the associated dissipation time is very short compared to the
time associated with shearing, we succeed in explaining this scaling behaviour
and the paradoxical nonzero shear rate in the vicinity of the free surface. We also
show that for dense particulate flows, the dissipation is mainly due to frictional
sliding.

In the second part, we emphasize some remarkable features exhibited
by dry grain avalanches in laboratory experiments. According to the slope
angle, the rear front propagates either upwards or downwards, with velocity
approximately equal to the depth averaged velocity of the avalanche. As a
counterpart, in both regimes, the velocity magnitude of the head front remains
of the order of twice the depth averaged avalanche velocity. We suggest
simple elementary mechanisms capable of accounting for these observations.
We propose then an analytical modelling aimed at describing the combined
processes governing the avalanche expansion. The two solutions that we obtain
for the growth regimes and for the avalanche shapes resemble very closely the
observations made in the laboratory and in the field.
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1. Introduction

In order to improve the processing of powders and of particulate materials, commonly used
in civil engineering, mining, chemical, pharmaceutics or food industries, or to prevent natural
disasters such as avalanches or landslides it is of the utmost interest to gain insight into the
rheology of granular materials. Two major features distinguish granular materials from atomic
or molecular systems. Firstly, fluctuations of thermal origin are irrelevant, so that the standard
route used to derive hydrodynamic equations from equilibrium statistical mechanics and linear
response theory must be revisited. Secondly, particles interact via dissipative interactions,
namely inelastic collisions and solid friction. Dissipations imply that steady motion states
require a permanent forcing. Up to now, most of modellings proceeded from the classical
hard sphere gas theory, adapted to account for collisional inelasticity and for friction (Haff
1983, Jenkins and Richman 1985) (for an extensive review see Savage 1993). In such models,
collisions are supposed binary, i.e. the medium is supposed dilute enough. In order to map onto
the classical kinetic theory, the granular temperature is defined from the velocity fluctuations
as T = 〈v2〉 − 〈v〉2 (Ogawa et al 1980). The mass and momentum balance equations read
as usual (because the collisional inelasticity does not intervene in the motion of the centre of
mass of a couple of colliding particles). As a counterpart, the inelastic dissipation intervenes
in the energy balance. The inelastic energy loss associated with a binary collision reads
as �E = 1/4 m(1 − e2)[n12 · (v1 − v2)]2, where m is the particle mass, e the inelastic
restitution coefficient and n12 the unit vector normal to the collision plane. Since the collision
frequency is equal to T 1/2/λ (λ being the mean free path) and since the typical magnitude
of (v1 − v2)

2 corresponds to the granular temperature, the inelastic energy sink reads as
�E ∝ (1 − e2)T 3/2/λ in the continuum limit (Haff 1983). Equating then the viscous heating
to the inelastic energy sink yields the following relation:

γ̇ ∝ (1 − e2)1/2λ−1T 1/2 (1)

between the shear rate γ̇ and the granular temperature and the ‘constitutive-like’ relation:

σ ∝ (1 − e2)−1/2λ2γ̇ 2 (2)

(σ being the shear stress) for simple, isothermal shear flows (here, friction and the subsequent
coupling with rotational degrees of freedom are disregarded). The quadratic dependence of
the shear stress on the shear rate was first proposed by Bagnold (1954), arguing that for a
shear flow of nonthermal particles, both the collisional momentum exchange and the collision
rate are proportional to γ̇ . Note that the kinetic theory departs from Bagnold’s approach by
emphasizing the role of the granular temperature. It is thus necessary to solve the coupled set of
conservation equations to obtain spatial information related to density, velocity or temperature
fields. It is moreover worth noting that, contrary to the case for a simple fluid, the uniqueness
of the steady solution is not ensured for a given set of boundary conditions and that the steady
solution may depend of the initial (supply) conditions (Shen and Babic 1999).

We are interested here in the flowing properties of systems constituted of dry, noncohesive
collections of grains. From laboratory experiments, it is known that such granular materials
can exhibit different kinds of flows according to the magnitude of the supply flux (Rajchenbach
1990). For a large flux, the flow appears to be continuous, in opposition to the case for the
regime of weak supply flux for which the flow displays a series of discrete avalanches. The
existence of these two different regimes originates in the requirement for the free surface slope
to exceed a certain angle θstart to initiate the flow. If the spontaneous discharge rate of the flow
is not balanced by the uphill supply flux, the slope progressively decreases and the flow stops
at angle θstop. Then a new avalanche is generated after the delay time required to store enough
supply matter and to increase again the slope up to the angle θstart. In contrast, if the supply
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Figure 1. Flow of a collection of monodisperse aluminium spheres (restitution coefficient e = 0.6,
flow rate ∼= 1100 grains s−1, slope angle 21◦ , exposure time of the photograph: 1/125 s).

flux is equal to or larger than the natural discharge rate of one avalanche, the continuous flow
regime is encountered. In the first part, we report recent advances concerning the continuous
flow regime of densely packed materials in the inclined channel geometry. Next, we address
the particular phenomenon of triggering and expansion of grain avalanches.

2. Flow of a densely packed material down an inclined channel

2.1. Experimental results

So far, there has been a reasonable qualitative agreement between the results of experiments
conducted on dilute granular media and the predictions of kinetic models (Azanza et al 1999).
However, experiments conducted on densely packed media, characterized by the existence of
long lasting contacts between grains, lead to drastically different results, results which appear
to lie beyond the domain of validity of standard hydrodynamic descriptions. We attribute this
discrepancy to the inadequacy of the binary collision picture in the case of densely packed
materials. Contrary to the dilute flows case, for which the transport of momentum proceeds
from ballistic flights and interparticle collisions, we suggest that in dense flows, the momentum
transmission is supported by continuous paths of transient contacts through the bulk.

We have performed experiments in a two-dimensional inclined channel, sloping between
20◦ and 30◦. The bottom is constituted of a saw-blade which ensures nonslipping boundary
conditions at the bottom for gentle slopes. The granular material is constituted of monodisperse
aluminium spheres of 1.5 mm diameter, with elastic restitution coefficient e = 0.6 and friction
coefficient k = 0.6. The flows are filmed with a digital camera (250 frames s−1) and pictures
are then analysed to access grain position and velocity. A typical picture of the flow is shown in
figure 1. Corresponding solid fraction and velocity profiles are shown in figure 2. The salient
features are the following. Firstly, all grains are in contact with their nearest neighbours, which
is far from the picture of a ‘granular gas’. The solid fraction appears as nearly constant in the
flowing layer (figure 2), with value ν ∼= 0.8 corresponding to the random close packing in
two dimensions (except for the very top region, owing to the unevenness of the free surface).
Secondly, the shear rate γ̇ is found to be very little dependent on altitude, i.e. the velocity
profile looks quasi-linear, and its order of magnitude is given by

√
g/d , where g is the gravity

constant and d is the grain diameter. Note that the shear rate is nonzero in the vicinity of
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Figure 2. Corresponding adimensioned velocity profile and solid fraction (averaged over 100
samplings).

the free surface, which is paradoxical since the shear stress is zero there. Interestingly, using
other materials (such as steel beads), the rheological behaviour is found to be insensitive to the
value of the restitution coefficient e. Moreover, it is worth noting that particles located in the
vicinity of the free surface experience neither saltation nor rebound. The absence of rebound
shows that, in such dense assemblies, the effective restitution coefficient is zero whatever
its value determined from binary collision experiments. As for the granular temperature, it
is important to realize that particle image velocimetry accesses grain displacements only to
within the experimental time resolution. In densely packed materials, grains remain in contact,
and do not experience free flight punctuated by distinct collisions. Ostensible fluctuations of
velocity result actually from the sliding of grains over adjacent corrugated layers of particles.

The above observations are inconsistent with the granular gas theory. According to (1),
steady, constant-density, uniformly sheared granular flows are isothermal. In that case, the
kinetic theory recovers the Bagnoldian quadratic dependence of the shear stress on shear
rate (2) and leads to the following stress balance: (∂vX/∂z)2 ∝ ρgz sin θ (where z is oriented
downwards, normal to the flow and x is the direction of the flow) in the steady regime. One
therefore obtains vX ∝ (ρgh3 sin θ)1/2[1 − (z/h)3/2] and the 3/2 power law with respect to
the depth disagrees with the constant shear rate found experimentally in closely packed media.

2.2. Proposed interpretation

As mentioned above, this discrepancy certainly proceeds from the inadequacy of the binary
collision picture in the case of closely packed materials. Collisions of solids involve various
phenomena such as deformations, waves, heating (Goldsmith 1960). The coefficient of
restitution is well defined only for direct collisions of free, unconstrained spheres—as
encountered in dilute gases—and it is improper to extend it to the case of multibody collisions
(Ivanov 1997). In the latter case, the apparent coefficient of restitution can be considerably
smaller than the one defined from binary collisions. Recently, Falcon et al (1998) showed
experimentally (in a 1D geometry) that a column of spherical grains, colliding as a whole with
a ground wall, displays a bounce height decreasing exponentially as the number of grains in
the column is increased. In such multibody collisions, the apparent restitution coefficient is
seen to be zero as the number of grains in contact exceeds a threshold value.

At the microscopic scale, a deformation wave propagates through the chains of grains in
contact, and experiences partial reflection at contacts and damping. The associated velocity
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Figure 3. Grain momentum suffers a discontinuity at each impact. The impulsive transfer of
momentum has to be taken into account, besides the contact forces in the formulation of the stress
tensor.

vS is that of the sound, typically several hundred metres per second. The passing time of a
sound pulse through a grain is given by τS = d/vS, where the sound velocity depends on the
confining pressure, owing to the Hertzian stiffness of contacts. For steel beads (with Young
modulus E = 220 GPa and diameter 8 mm), τS ranges from 4 to 8 µs for a confining pressure
varied from 0.02 to 2 MPa (Coste and Gilles 1999). The time τS must be compared to the
time γ̇ −1 (typically 0.1 s) separating two successive collisions suffered by a grain and imposed
by the macroscopic shear rate in gravity flow experiments. One can therefore realize that the
fastest and most efficient channel for the long range transport of momentum and energy in dense
media is associated with sound waves, not with momentum scattering due to distinct collisions,
unlike in dilute media. The absence of saltation or rebound results from the damping suffered
by momentum and energy during their transport along continuous paths of contacts. The
associated dissipation time is of the order of some hundred microseconds (i.e., considerably
smaller than the shearing time γ̇ −1) (Falcon et al 1998).

Hence, taking into account multibody collisions and the subsequent decrease to zero of the
apparent restitution coefficient appears crucial to explaining the rheology of densely packed
flow. We emphasize the necessity of giving up the picture of binary collisions, which is at
the foundation of the granular gas kinetic theory, in the case of dense packings. In order to
establish the motion equations, we adopt here a heuristic approach. We just assume in the
following that the damping time is very short compared to γ̇ −1.

In the limit of quasi-static deformations, the stress tensor in densely packed materials can
be defined as a function of the set of contact forces. According to Christoffersen et al (1981),
the static component of the stress tensor reads as σ = (1/2V )

∑
grains i �= j fi j ⊗ ri j , where fi j is

the force exerted on grain i by grain j and ri j is the vector from the centroid of grain i to that of
grain j (but other definitions can be envisaged). The above term is relevant for describing the
regime of very slow deformations accounted for by the (rate-independent) Coulomb plasticity
(and the ratio σxy/σyy = tan θc defines the static angle of friction θc). As pointed out by
Goddard (1998), for nonzero shear rate, it is necessary to regard the impulsive transfers of
momentum between grains besides the contact force network in the equation of motion. Such
impulsive transfers of momentum generate a clearly audible acoustic emission, and lead to
momentum discontinuities at a frequency γ̇ (see figure 3). Taking the effective restitution
coefficient equal to zero, the momentum discontinuity is proportional to md γ̇ (where m is the
grain mass), so that this mechanism gives rise to a rate-dependent extra term

Dvx

Dt

∣
∣
∣
∣
coll.

∝ −d γ̇ 2 (3)
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Figure 4. [sin(θ − θc)/ cos θc]1/2(y/d) as a function of the dimensionless velocity vX /
√

gd for
various inclination angles θ (21◦ � θ � 29◦). Particles are aluminium spheres (with 1.5 mm
diameter). For θ = 29◦, the flow is nonuniform and accelerates along the channel.

in the momentum equation (written here per unit mass), D/Dt being the material derivative.
Note that the last term differs from the usual Bagnoldian term

Dvx

Dt

∣
∣
∣
∣
Bagnold

∝ −d2 ∂(γ̇ 2)

∂z
(4)

resulting from binary collisions and corresponding to the viscous stress in a granular gas.
One can note one order of difference in the derivatives of the right-hand side of equations (3)
and (4). The reason for this dissimilarity is the following. In the kinetic theory, or in Bagnold’s
model, momentum is hydrodynamically conserved. In contrast, in dense packings, grains are
constrained to multiple contacts and the momentum conservation in the centre of mass frame
of couples of particles involved in nominal binary collisions is broken.

Adding in equation (3) both gravity and Coulombic friction terms leads to the following
equation:

Dvx

Dt
= g sin θ − g tan θc − d

(
∂vx

∂z

)2

(5)

for a dense gravity flow down an incline of slope angle θ (where D/Dt is the material derivative),
from which we derive the following steady solution for the shear rate:

∂vx

∂y
∝

[
sin(θ − θc)

cos θc

]1/2√ g

d
. (6)

The above reasoning predicts a linear velocity profile, that is in fair agreement with the
experimental data obtained in the inclined channel geometry for slope angles close to the angle
of repose θc, and also in the rotating drum set-up (see Nakagawa et al 1993, Rajchenbach
et al 1995, Orpe and Khakhar 2001). This approach succeeds moreover in accounting
for the paradoxical nonzero shear rate evidenced in the vicinity of the free surface. Note
that equation (6) was previously postulated by Orpe and Khakhar (2001) from analyses of
experiments carried out on a rotating drum.

In figure 4, we plot a parameter combining the dimensionless altitude y/d and the following
function of the slope: [sin(θ − θc)/ cos θc]1/2 as a function of the dimensionless velocity
vX /

√
gd, for different inclination angles 21◦ � θ � 29◦. We can notice that γ̇ clearly

depends on [sin(θ − θc)/ cos θc]1/2√g/d (for 21◦ � θ � 27◦) and that the linearity of the
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velocity profiles improves as θ approaches θc. For steeper slopes (θ � 29◦), the flow appears
nonuniform and accelerates along the channel (1 m long) and the experimental points do not
merge onto the master curve. However, in the last case (θ = 29◦) the shear rate remains
nonzero in the vicinity of the free surface, unlike in kinetic theory.

The previous result can be extended to polydisperse collections of grains, provided that
the segregation phenomenon is accounted for. For the sake of simplicity, consider two species
of grains, respectively of diameter d1 and d2 (d1 > d2). In gravity driven flows, the larger
species rise up (Savage and Lun 1988), so that, in a rough description supposing a complete
demixing, the upper layer constituted of the larger grains displays a shear rate γ̇1 ∝ √

g/d1

while the lower layer displays a shear rate γ̇2 ∝ √
g/d2. We can hence deduce that segregation

probably induces convexity in the velocity profile of polydisperse flows.
It is of interest to compare the frictional sliding losses to the total dissipation in the inclined

channel geometry. In the continuum description, the frictional work reads as Wf = ∫
σxy

∂vx
∂y dV

(where σxy/σyy = tan θc). In the steady regime, the total dissipation is equal to the decrease
of the potential energy �Ep = ∫

ρg sin θvx dV . For such dense flows, the volume fraction
is close to that of the random close packing and approximately constant (see figure 2), so
that one gets Wf ≈ ∫

(tan θc)σyy
∂v
∂y dV = ρg cos θ tan θc

∫
vx dV . We can deduce the ratio of

frictional to total dissipation Wf/�Ep ≈ tan θc/ tan θ . For realistic values of θc (tan θc
∼= 20◦

for ballotini, tan θc
∼= 35◦ for sand) and for θ = θc + 5◦, one can estimate that about 80% of

the total dissipation proceeds from frictional sliding (Rajchenbach 2003).
The viscous mechanism associated with free flights and collisions is certainly relevant

to the case of dilute flows, but it proves inadequate for describing densely packed flows.
The above result gives a foundation to the approaches which only consider dry friction in
the depth averaged (à la ‘Saint-Venant’) momentum equation for modelling soil slidings
(Savage and Hutter 1989). This approximation is of current use in the geological, geophysical
and soil mechanical communities and is of great interest for describing the inertial regime.
Nevertheless, Coulomb friction being rate independent, it is necessary to take into account the
inelastic dissipation to describe correctly the regime of limiting velocity.

3. Nucleation and growth of grain avalanches

3.1. The two regimes of growth

We address now the issue of the avalanche triggering and of the development in time. First,
it is necessary to recall some experimental features, which are at the basis of our analytical
description. Two regimes of growth can be distinguished, according to the slope angle (Daerr
and Douady 1999). For spontaneous avalanches, starting in the vicinity of the maximum angle
of repose θstart (regime I), the rear front propagates up the slope with a velocity |v↑| ≈ |v̄|,
where v̄ is the depth averaged velocity of the avalanche (see figure 5) (Rajchenbach 1997,
2002a). In contrast, for avalanches triggered externally (e.g. by perturbing the free surface
with a probe) in the range of metastability θstop < θ < θstart (regime II) the rear front propagates
downwards with a velocity approximately equal to v̄ (figure 6).

We can advance a simple explanation for this change of behaviour. For θ ∼= θstart, all
grains are on the verge of instability, and the first starting grains lead to a series of successive
destabilizations upwards. This upwards propagating front corresponds to the onset of motion of
particles leaning on neighbouring starting grains down the slope. A simple mass conservation
argument allows one to recover the magnitude of the upwards front velocity in regime I. The
source term feeding up the avalanche flow rate is related to the advance of the destabilizing
front uphill. We get thus |v↑| ≈ v̄ (where v̄ is the depth averaged velocity of the avalanche)
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(a) (b) (c)

Figure 5. Sequence of pictures showing the nucleation and the propagation of a spontaneous
avalanche in regime I. Moving grains are tagged in black. The delay time between snapshots is
0.1 s. In (a), the most unstable particle (or block of particles) is first destabilized. Next ((b) and (c))
we observe the propagation of a kinematic wave uphill, which corresponds to destabilization of
uphill adjacent particles leaning on the previous starting grains. Simultaneously, adjacent downhill
particles at rest undergo shocks from the head granular jump, triggering their motion.

Figure 6. Sequence of pictures showing the development of an externally triggered avalanche
(regime II). The rear front propagates downwards with a velocity equal to the depth averaged
velocity v̄ of the avalanche. The velocity v↓ of the head front is approximately equal to 2v̄.

because the volume fractions in the frozen and flowing phases are comparable. In contrast, for
θstop < θ < θstart, the first falling grains are not able to induce such sequential destabilizations
up the slope. Consequently the first starting grains form the rear limit of the avalanche, and
rapidly attain their limiting velocity (of the order of

√
gd). To sum up, the rear front velocity

displays an abrupt discontinuity (of amplitude 2v̄) and a change of sign at slope θstart. This
analytical singularity can be considered as the proper signature of θstart and has been clearly
evidenced experimentally by Daerr (2001). On the other hand, in both regimes I and II, the head
front propagates downwards with a velocity noticeably larger than the depth averaged velocity
of the avalanche. The reason is that blocks of grains lying at rest downstream experience
destabilizing collisions from the avalanche head front. So the jump is intermittently refreshed,
and made up of new grains just entering into motion. More precisely, the velocity v↓ of the
head front is approximately equal to twice the depth averaged avalanche velocity v̄. A look
at a microscopic scale shed light on this property. When a block of grains is destabilized as a
whole, the head front suddenly advances over a length corresponding to the block size.

Complementarily, between two successive block destabilization events, the front advances
with the average avalanche velocity v̄ over a distance which compares with the average block
size λ. So, the delay time between two destabilization events reads τ = λ/v̄, and the time
averaged head front velocity is equal to v↓ ∼= v̄ + λ/τ ∼= 2v̄ (Rajchenbach 1997, 2002b).
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(a) (b)

Figure 7. (a) Sketch showing the avalanche growth in the case of spontaneous triggering (regime I;
θ ≈ θstart ). According to our modelling, the avalanche area at time t is up of the superimposition
of the set of circles of the equation x2 + (y + 1

2 v̄τ )2 = ( 1
2 v̄τ )2 shifted down by a length 2v̄(t − τ ).

(b) Real picture taken by Daerr and Douady (1999).

3.2. Modelling of avalanche growth in three dimensions

3.2.1. Development of spontaneous avalanches (regime I). We propose now to generalize
these results issuing from experiments conducted in a two-dimensional configuration to a
three-dimensional inclined plane geometry, and to compare our findings with the experimental
results reported by Daerr and Douady (1999). The incline is tilted by angle θ with respect
to the horizontal. We define the axis Ox as oriented horizontally along the plane, and the
axis Oy as oriented downwards along the steepest slope. First consider the upward motion
of the rear front. We expect the rear front to propagate along the direction OM, defined by
the polar angle (Oy, OM) = π − α, with a velocity |v↑| = v̄ cos α. The hodograph v↑(α) is
therefore a circle. We can write for the loci (x, y) of the rear front at time τ the expression
x2 + (y + 1

2 v̄τ )2 = ( 1
2 v̄τ )2.

So, the successive positions of the upper boundaries constitute a set of circles passing
through the initial point of the avalanche nucleation and with radius increasing linearly in
time. It is reasonable to assume then that all grains, once destabilized, fall along the steepest
slope direction. Recalling that the avalanche (at time τ ) is constituted of all grains destabilized
previously during the time interval [0, τ ], and that the lower front propagates with velocity 2v̄,
the avalanche area at time t is constituted by the superimposition of the previous set of circles
(labelled for each time τ , 0 < τ < t) shifted down by a length 2v̄(t − τ ). The equation of this
family of circles reads

x2 +
(
y − 2v̄t + 5

2 v̄τ
)2 = (

1
2 v̄τ

)2
0 < τ < t . (7)

In figure 7(a) we report the family of circles corresponding to equation (1) (in grey). It is easy
to recognize the intersection at the tip with angle equal to 2 sin−1 1

5 ≈ 23◦. In figure 7(b) we
compare the avalanche boundary determined within this description with an experimental view
obtained by Daerr and Douady in the same inclined plane geometry (Daerr and Douady 1999).
The agreement is fairly good. Nevertheless we can notice some light differences. The real
head front is rounded, while the previous scheme predicts a tip with angle 23◦. Three extra
mechanisms can be envisaged to explain this rounding effect. Firstly we can consider that
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there is a waiting time before the front attains its limiting velocity, so that the actual position
of the front is behind the position predicted by this approach which neglects any transient.
Secondly we can consider that the grain falls along the steepest slope are accompanied with
lateral fluctuating motions, owing to the roughness of the interface. These random motions
along the axis Ox can be described by a diffusive mechanism (Samson et al 1998), with a
diffusion constant D⊥ = 〈x2〉/2t . Lastly we can consider that the local steepest slope is
not actually oriented downwards, because the avalanche forms a bulge and grains tend to be
laterally deflected towards the outer edge of the flowing bulge. Let us define the x-component
magnitude of the velocity corresponding to the deflection as v⊥. We expect the deflection
effect to become more effective at long time than the diffusion, because the deflection leads to
a lateral expansion linear in time, whereas the diffusion spread acts like t1/2. Nevertheless, note
that we previously succeeded in describing the lateral expansion of the avalanche satisfactorily
(see figure 7) without taking into account such lateral deflection; this shows that v⊥ < v̄.

3.2.2. Development of externally triggered avalanches (regime II). We can also propose an
analytical formulation for the growth of externally triggered avalanches, which develop in the
range of stability θstop < θ < θstart. Since the velocity of the rear front is v̄ and that of the
head front is 2v̄, the centre of mass of the avalanche moves downwards with velocity 3

2 v̄. For
the sake of simplicity we assume then that the avalanche velocity (referred to in the centre of
mass frame) varies continuously from v⊥ (in the Ox-direction) to 3

2 v̄ (in the Oy-direction),
according to an elliptic hodograph. Hence, the equation of the avalanche contour at time t can
be written parametrically as

(
v̄x

2v⊥

)2

+

(

y − 3

2
v̄t

)2

=
(

1

2
v̄t

)2

. (8)

The avalanche track is therefore constituted by the superimposition of homothetic ellipses
dilating linearly in time and shifted down by a length 3

2 v̄. It is easy to find that the upper
contour of the track is bounded by two straight lines intersecting at the initial locus of the
avalanche nucleation with an angle equal to 2 tan−1 2v⊥√

8v̄
. Figure 8 reports the shape of the

avalanche track determined according to this modelling. We also show for comparison the real
photograph obtained by Daerr and Douady in their experiment dealing with this second category
of avalanche morphology (Daerr and Douady 1999). The agreement is very satisfactory. The
adjustment of the lateral expansion with time provides the magnitude of the x-component of
the velocity: we find 0.10v̄ < v⊥ < 0.15v̄.

3.3. Discussion

It is worth noting that equation (6) is that of a cone which can be considered as the characteristic
surface of the following equation:

(
∂

∂ t
+ V

∂

∂y

)2

F(x, y, t) = c2∇2 F(x, y, t) (9)

appropriate for describing waves propagating isotropically with speed cand emitted by a source
positioned in a moving flow advected with velocity V . For the first avalanche morphology
(θ ∼= θstart), the identification of V with 5

2 v̄ and of c with v̄/2 proceeds straightforwardly from
equation (1). Hence, the lower boundary of the avalanche identifies with the Mach cone (here
in two dimensions), and our modelling brings out an analogy between the avalanche shape and
a supersonic wavefront. Regarding the track of the avalanches of the second type (θ < θstart),
making such an analogy is also possible under the condition of changing the scale of x to
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Figure 8. Left: avalanche track at time t (regime of externally triggered avalanches, θ < θstart )
according to the present modelling. Right: real picture taken by Daerr and Douady (1999).

Figure 9. Tracks of loose snow avalanches (photograph taken by Roch, from McClung and Schaerer
(1993)).

x ′ = (v̄/2v⊥)x in order to reintroduce isotropy. In that case we obtain V = 3
2 v̄ and the Mach

cone is oriented upwards.
In figure 9 we show a picture taken by the Swiss Alpinist André Roch (from McClung

and Schaerer 1993). This photograph depicts the typical shape of loose snow avalanches.
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Surprisingly, although snow is a wet and cohesive material, we recognize a triangular tip
oriented upwards, very similar to that exhibited by dry grain avalanches in regime II, and with
comparable angle.
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